|  TensorFlow 1 version |  View source on GitHub | 
Computes the mean squared error between labels and predictions.
tf.keras.losses.MSE(
    y_true, y_pred
)
After computing the squared distance between the inputs, the mean value over the last dimension is returned.
loss = mean(square(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3))y_pred = np.random.random(size=(2, 3))loss = tf.keras.losses.mean_squared_error(y_true, y_pred)assert loss.shape == (2,)assert np.array_equal(loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN]. | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN]. | 
| Returns | |
|---|---|
| Mean squared error values. shape = [batch_size, d0, .. dN-1]. |