tf.keras.losses.categorical_crossentropy

TensorFlow 1 version View source on GitHub

Computes the categorical crossentropy loss.

Standalone usage:

y_true = [[0, 1, 0], [0, 0, 1]]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = tf.keras.losses.categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.0513, 2.303], dtype=float32)

y_true Tensor of one-hot true targets.
y_pred Tensor of predicted targets.
from_logits Whether y_pred is expected to be a logits tensor. By default, we assume that y_pred encodes a probability distribution.
label_smoothing Float in [0, 1]. If > 0 then smooth the labels.

Categorical crossentropy loss value.