tf.keras.losses.sparse_categorical_crossentropy
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Computes the sparse categorical crossentropy loss.
tf.keras.losses.sparse_categorical_crossentropy(
    y_true, y_pred, from_logits=False, axis=-1
)
Standalone usage:
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.0513, 2.303], dtype=float32)
| Args | 
|---|
| y_true | Ground truth values. | 
| y_pred | The predicted values. | 
| from_logits | Whether y_predis expected to be a logits tensor. By default,
we assume thaty_predencodes a probability distribution. | 
| axis | (Optional) Defaults to -1. The dimension along which the entropy is
computed. | 
| Returns | 
|---|
| Sparse categorical crossentropy loss value. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
  Last updated 2020-10-01 UTC.
  
  
  
    
      [null,null,["Last updated 2020-10-01 UTC."],[],[]]