|  TensorFlow 1 version |  View source on GitHub | 
Computes the crossentropy metric between the labels and predictions.
tf.keras.metrics.BinaryCrossentropy(
    name='binary_crossentropy', dtype=None, from_logits=False, label_smoothing=0
)
This is the crossentropy metric class to be used when there are only two label classes (0 and 1).
| Args | |
|---|---|
| name | (Optional) string name of the metric instance. | 
| dtype | (Optional) data type of the metric result. | 
| from_logits | (Optional )Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution. | 
| label_smoothing | (Optional) Float in [0, 1]. When > 0, label values are
smoothed, meaning the confidence on label values are relaxed.
e.g. label_smoothing=0.2means that we will use a value of0.1for
label0and0.9for label1". | 
Standalone usage:
m = tf.keras.metrics.BinaryCrossentropy()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])m.result().numpy()0.81492424
m.reset_states()m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],sample_weight=[1, 0])m.result().numpy()0.9162905
Usage with compile() API:
model.compile(
    optimizer='sgd',
    loss='mse',
    metrics=[tf.keras.metrics.BinaryCrossentropy()])
Methods
reset_states
reset_states()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
    y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
y_true and y_pred should have the same shape.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN]. | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN]. | 
| sample_weight | Optional sample_weightacts as a
coefficient for the metric. If a scalar is provided, then the metric is
simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the metric for each sample of the batch is rescaled
by the corresponding element in thesample_weightvector. If the shape
ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted
to this shape), then each metric element ofy_predis scaled by the
corresponding value ofsample_weight. (Note ondN-1: all metric
functions reduce by 1 dimension, usually the last axis (-1)). | 
| Returns | |
|---|---|
| Update op. |