Update '*var' according to the AdaMax algorithm.
tf.raw_ops.ResourceApplyAdaMax(
    var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad, use_locking=False,
    name=None
)
mt <- beta1 * m{t-1} + (1 - beta1) * g vt <- max(beta2 * v{t-1}, abs(g)) variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon)
| Args | |
|---|---|
| var | A Tensorof typeresource. Should be from a Variable(). | 
| m | A Tensorof typeresource. Should be from a Variable(). | 
| v | A Tensorof typeresource. Should be from a Variable(). | 
| beta1_power | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,complex64,int64,qint8,quint8,qint32,bfloat16,uint16,complex128,half,uint32,uint64.
Must be a scalar. | 
| lr | A Tensor. Must have the same type asbeta1_power.
Scaling factor. Must be a scalar. | 
| beta1 | A Tensor. Must have the same type asbeta1_power.
Momentum factor. Must be a scalar. | 
| beta2 | A Tensor. Must have the same type asbeta1_power.
Momentum factor. Must be a scalar. | 
| epsilon | A Tensor. Must have the same type asbeta1_power.
Ridge term. Must be a scalar. | 
| grad | A Tensor. Must have the same type asbeta1_power. The gradient. | 
| use_locking | An optional bool. Defaults toFalse.
IfTrue, updating of the var, m, and v tensors will be protected
by a lock; otherwise the behavior is undefined, but may exhibit less
contention. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| The created Operation. |