tf.sparse.split
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Split a SparseTensor into num_split tensors along axis.
tf.sparse.split(
    sp_input=None, num_split=None, axis=None, name=None
)
If the sp_input.dense_shape[axis] is not an integer multiple of num_split
each slice starting from 0:shape[axis] % num_split gets extra one
dimension. For example, if axis = 1 and num_split = 2 and the
input is:
input_tensor = shape = [2, 7]
[    a   d e  ]
[b c          ]
Graphically the output tensors are:
output_tensor[0] =
[    a ]
[b c   ]
output_tensor[1] =
[ d e  ]
[      ]
| Args | 
|---|
| sp_input | The SparseTensorto split. | 
| num_split | A Python integer. The number of ways to split. | 
| axis | A 0-D int32Tensor. The dimension along which to split. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| num_splitSparseTensorobjects resulting from splittingvalue. | 
| Raises | 
|---|
| TypeError | If sp_inputis not aSparseTensor. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
  Last updated 2020-10-01 UTC.
  
  
  
    
      [null,null,["Last updated 2020-10-01 UTC."],[],[]]