|  TensorFlow 1 version |  View source on GitHub | 
Transposed convolution layer (sometimes called Deconvolution).
Inherits From: Conv2D, Layer, Module
tf.keras.layers.Conv2DTranspose(
    filters, kernel_size, strides=(1, 1), padding='valid',
    output_padding=None, data_format=None, dilation_rate=(1, 1), activation=None,
    use_bias=True, kernel_initializer='glorot_uniform',
    bias_initializer='zeros', kernel_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    bias_constraint=None, **kwargs
)
The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
When using this layer as the first layer in a model,
provide the keyword argument input_shape
(tuple of integers, does not include the sample axis),
e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures
in data_format="channels_last".
| Arguments | |
|---|---|
| filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_ratevalue != 1. | 
| padding | one of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| output_padding | An integer or tuple/list of 2 integers,
specifying the amount of padding along the height and width
of the output tensor.
Can be a single integer to specify the same value for all
spatial dimensions.
The amount of output padding along a given dimension must be
lower than the stride along that same dimension.
If set to None(default), the output shape is inferred. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
| dilation_rate | an integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Can be a single integer to specify the same value for
all spatial dimensions.
Currently, specifying any dilation_ratevalue != 1 is
incompatible with specifying any stride value != 1. | 
| activation | Activation function to use.
If you don't specify anything, no activation is applied (
see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| kernel_initializer | Initializer for the kernelweights matrix (
seekeras.initializers). | 
| bias_initializer | Initializer for the bias vector (
see keras.initializers). | 
| kernel_regularizer | Regularizer function applied to
the kernelweights matrix (seekeras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector (
see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to
the output of the layer (its "activation") (see keras.regularizers). | 
| kernel_constraint | Constraint function applied to the kernel matrix (
see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector (
see keras.constraints). | 
Input shape:
4D tensor with shape:
(batch_size, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(batch_size, rows, cols, channels) if data_format='channels_last'.
Output shape:
4D tensor with shape:
(batch_size, filters, new_rows, new_cols) if data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters) if data_format='channels_last'.
rows and cols values might have changed due to padding.
If output_padding is specified:
new_rows = ((rows - 1) * strides[0] + kernel_size[0] - 2 * padding[0] +
output_padding[0])
new_cols = ((cols - 1) * strides[1] + kernel_size[1] - 2 * padding[1] +
output_padding[1])
| Returns | |
|---|---|
| A tensor of rank 4 representing activation(conv2dtranspose(inputs, kernel) + bias). | 
| Raises | |
|---|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. |