|  TensorFlow 1 version |  View source on GitHub | 
Global max pooling operation for 1D temporal data.
tf.keras.layers.GlobalMaxPool1D(
    data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the maximum value over the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])x = tf.reshape(x, [3, 3, 1])x<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=array([[[1.], [2.], [3.]],[[4.], [5.], [6.]],[[7.], [8.], [9.]]], dtype=float32)>max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()max_pool_1d(x)<tf.Tensor: shape=(3, 1), dtype=float32, numpy=array([[3.],[6.],[9.], dtype=float32)>
| Arguments | |
|---|---|
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, steps, features)whilechannels_firstcorresponds to inputs with shape(batch, features, steps). | 
Input shape:
- If data_format='channels_last': 3D tensor with shape:(batch_size, steps, features)
- If data_format='channels_first': 3D tensor with shape:(batch_size, features, steps)
Output shape:
2D tensor with shape (batch_size, features).