|  TensorFlow 1 version |  View source on GitHub | 
Zero-padding layer for 2D input (e.g. picture).
tf.keras.layers.ZeroPadding2D(
    padding=(1, 1), data_format=None, **kwargs
)
This layer can add rows and columns of zeros at the top, bottom, left and right side of an image tensor.
Examples:
input_shape = (1, 1, 2, 2)x = np.arange(np.prod(input_shape)).reshape(input_shape)print(x)[[[[0 1][2 3]]]]y = tf.keras.layers.ZeroPadding2D(padding=1)(x)print(y)tf.Tensor([[[[0 0][0 0][0 0][0 0]][[0 0][0 1][2 3][0 0]][[0 0][0 0][0 0][0 0]]]], shape=(1, 3, 4, 2), dtype=int64)
| Arguments | |
|---|---|
| padding | Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. 
 | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
Input shape:
4D tensor with shape:
- If data_formatis"channels_last":(batch_size, rows, cols, channels)
- If data_formatis"channels_first":(batch_size, channels, rows, cols)
Output shape:
4D tensor with shape:
- If data_formatis"channels_last":(batch_size, padded_rows, padded_cols, channels)
- If data_formatis"channels_first":(batch_size, channels, padded_rows, padded_cols)