Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tf.compat.v1.nn.quantized_relu_x(
    features: _atypes.TensorFuzzingAnnotation[TV_QuantizedReluX_Tinput],
    max_value: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
    min_features: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
    max_features: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
    out_type: TV_QuantizedReluX_out_type = tf.dtypes.quint8,
    name=None
)
Args | |
|---|---|
features
 | 
A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16.
 | 
max_value
 | 
A Tensor of type float32.
 | 
min_features
 | 
A Tensor of type float32.
The float value that the lowest quantized value represents.
 | 
max_features
 | 
A Tensor of type float32.
The float value that the highest quantized value represents.
 | 
out_type
 | 
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16. Defaults to tf.quint8.
 | 
name
 | 
A name for the operation (optional). |