tf.keras.layers.Activation
Applies an activation function to an output.
Inherits From: Layer
, Module
tf.keras.layers.Activation(
activation, **kwargs
)
Args |
activation
|
Activation function, such as tf.nn.relu , or string name of
built-in activation function, such as "relu".
|
Usage:
layer = tf.keras.layers.Activation('relu')
output = layer([-3.0, -1.0, 0.0, 2.0])
list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
layer = tf.keras.layers.Activation(tf.nn.relu)
output = layer([-3.0, -1.0, 0.0, 2.0])
list(output.numpy())
[0.0, 0.0, 0.0, 2.0]
|
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.
|
Output shape |
Same shape as input.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]