RNNCell wrapper that ensures cell inputs are added to the outputs.
Inherits From: RNNCell, Layer, Layer, Module
tf.compat.v1.nn.rnn_cell.ResidualWrapper(
    cell, residual_fn=None, **kwargs
)
Args | 
cell
 | 
An instance of RNNCell.
 | 
residual_fn
 | 
(Optional) The function to map raw cell inputs and raw
cell outputs to the actual cell outputs of the residual network.
Defaults to calling nest.map_structure on (lambda i, o: i + o),
inputs and outputs.
 | 
**kwargs
 | 
dict of keyword arguments for base layer.
 | 
Attributes | 
graph
 | 
 | 
output_size
 | 
Integer or TensorShape: size of outputs produced by this cell.
 | 
scope_name
 | 
 | 
state_size
 | 
size(s) of state(s) used by this cell.
 It can be represented by an Integer, a TensorShape or a tuple of
Integers or TensorShapes.
  | 
Methods
apply
View source
apply(
    *args, **kwargs
)
get_initial_state
View source
get_initial_state(
    inputs=None, batch_size=None, dtype=None
)
get_losses_for
View source
get_losses_for(
    inputs
)
Retrieves losses relevant to a specific set of inputs.
| Args | 
inputs
 | 
Input tensor or list/tuple of input tensors.
 | 
| Returns | 
List of loss tensors of the layer that depend on inputs.
 | 
get_updates_for
View source
get_updates_for(
    inputs
)
Retrieves updates relevant to a specific set of inputs.
| Args | 
inputs
 | 
Input tensor or list/tuple of input tensors.
 | 
| Returns | 
List of update ops of the layer that depend on inputs.
 | 
zero_state
View source
zero_state(
    batch_size, dtype
)
Return zero-filled state tensor(s).
| Args | 
batch_size
 | 
int, float, or unit Tensor representing the batch size.
 | 
dtype
 | 
the data type to use for the state.
 | 
| Returns | 
If state_size is an int or TensorShape, then the return value is a
N-D tensor of shape [batch_size, state_size] filled with zeros.
If state_size is a nested list or tuple, then the return value is
a nested list or tuple (of the same structure) of 2-D tensors with
the shapes [batch_size, s] for each s in state_size.
  |