tf.keras.metrics.mean_absolute_error
Computes the mean absolute error between labels and predictions.
View aliases
Main aliases
tf.keras.losses.MAE
, tf.keras.losses.mae
, tf.keras.losses.mean_absolute_error
, tf.keras.metrics.MAE
, tf.keras.metrics.mae
, tf.losses.MAE
, tf.losses.mae
, tf.losses.mean_absolute_error
, tf.metrics.MAE
, tf.metrics.mae
, tf.metrics.mean_absolute_error
tf.keras.metrics.mean_absolute_error(
y_true, y_pred
)
loss = mean(abs(y_true - y_pred), axis=-1)
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.mean_absolute_error(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(), np.mean(np.abs(y_true - y_pred), axis=-1))
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Mean absolute error values. shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]