|  View source on GitHub | 
Computes the logarithm of the hyperbolic cosine of the prediction error.
Inherits From: Loss
tf.keras.losses.LogCosh(
    reduction=losses_utils.ReductionV2.AUTO, name='log_cosh'
)
logcosh = log((exp(x) + exp(-x))/2),
where x is the error y_pred - y_true.
Standalone usage:
y_true = [[0., 1.], [0., 0.]]y_pred = [[1., 1.], [0., 0.]]# Using 'auto'/'sum_over_batch_size' reduction type.l = tf.keras.losses.LogCosh()l(y_true, y_pred).numpy()0.108
# Calling with 'sample_weight'.l(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()0.087
# Using 'sum' reduction type.l = tf.keras.losses.LogCosh(reduction=tf.keras.losses.Reduction.SUM)l(y_true, y_pred).numpy()0.217
# Using 'none' reduction type.l = tf.keras.losses.LogCosh(reduction=tf.keras.losses.Reduction.NONE)l(y_true, y_pred).numpy()array([0.217, 0.], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.LogCosh())
| Args | |
|---|---|
| reduction | Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the
reduction ption will be determined by the usage context. For
almost all cases this defaults toSUM_OVER_BATCH_SIZE. When
used under atf.distribute.Strategy, except viaModel.compile()andModel.fit(), usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this
custom training tutorial
for more details. | 
| name | Optional name for the instance. Defaults to 'log_cosh'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A keras.losses.Lossinstance. | 
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN],
except sparse loss functions such as sparse categorical
crossentropy where shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for
the loss. If a scalar is provided, then the loss is simply
scaled by the given value. Ifsample_weightis a tensor of
size[batch_size], then the total loss for each sample of the
batch is rescaled by the corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to this
shape), then each loss element ofy_predis scaled by the
corresponding value ofsample_weight. (Note ondN-1: all loss
functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar.
(NotedN-1because all loss functions reduce by 1 dimension,
usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. |