Fake-quantize the 'inputs' tensor of type float via global float scalars
tf.quantization.fake_quant_with_min_max_vars(
inputs: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
min: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
max: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
num_bits: int = 8,
narrow_range: bool = False,
name=None
) -> _atypes.TensorFuzzingAnnotation[_atypes.Float32]
Fake-quantize the inputs
tensor of type float via global float scalars
min
and max
to outputs
tensor of same shape as inputs
.
Attributes
[min; max]
define the clamping range for theinputs
data.inputs
values are quantized into the quantization range ([0; 2^num_bits - 1]
whennarrow_range
is false and[1; 2^num_bits - 1]
when it is true) and then de-quantized and output as floats in[min; max]
interval.num_bits
is the bitwidth of the quantization; between 2 and 16, inclusive.
Before quantization, min
and max
values are adjusted with the following
logic.
It is suggested to have min <= 0 <= max
. If 0
is not in the range of values,
the behavior can be unexpected:
- If
0 < min < max
:min_adj = 0
andmax_adj = max - min
. - If
min < max < 0
:min_adj = min - max
andmax_adj = 0
. - If
min <= 0 <= max
:scale = (max - min) / (2^num_bits - 1)
,min_adj = scale * round(min / scale)
andmax_adj = max + min_adj - min
.
This operation has a gradient and thus allows for training min
and max
values.
Returns | |
---|---|
A Tensor of type float32 .
|