tf.keras.activations.hard_sigmoid
Hard sigmoid activation function.
tf.keras.activations.hard_sigmoid(
x
)
A faster approximation of the sigmoid activation.
Piecewise linear approximation of the sigmoid function.
Ref: 'https://en.wikipedia.org/wiki/Hard_sigmoid'
Example:
a = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype = tf.float32)
b = tf.keras.activations.hard_sigmoid(a)
b.numpy()
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
Returns |
The hard sigmoid activation, defined as:
if x < -2.5: return 0
if x > 2.5: return 1
if -2.5 <= x <= 2.5: return 0.2 * x + 0.5
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]