Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tf.compat.v1.nn.quantized_relu_x(
features: _atypes.TensorFuzzingAnnotation[TV_QuantizedReluX_Tinput],
max_value: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
min_features: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
max_features: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
out_type: TV_QuantizedReluX_out_type = tf.dtypes.quint8
,
name=None
)
Args | |
---|---|
features
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
|
max_value
|
A Tensor of type float32 .
|
min_features
|
A Tensor of type float32 .
The float value that the lowest quantized value represents.
|
max_features
|
A Tensor of type float32 .
The float value that the highest quantized value represents.
|
out_type
|
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.quint8 .
|
name
|
A name for the operation (optional). |