This is the reduction operation for the elementwise tf.sparse.maximum op.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_max(). In particular, this Op also returns a dense Tensor
instead of a sparse one.
Reduces sp_input along the dimensions given in reduction_axes. Unless
keepdims is true, the rank of the tensor is reduced by 1 for each entry in
reduction_axes. If keepdims is true, the reduced dimensions are retained
with length 1.
If reduction_axes has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.
The values not defined in sp_input don't participate in the reduce max,
as opposed to be implicitly assumed 0 -- hence it can return negative values
for sparse reduction_axes. But, in case there are no values in
reduction_axes, it will reduce to 0. See second example below.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.compat.v1.sparse_reduce_max\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.14.0/tensorflow/python/ops/sparse_ops.py#L1339-L1422) |\n\nComputes [`tf.sparse.maximum`](../../../tf/sparse/maximum) of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.sparse.reduce_max`](https://www.tensorflow.org/api_docs/python/tf/compat/v1/sparse_reduce_max)\n\n\u003cbr /\u003e\n\n tf.compat.v1.sparse_reduce_max(\n sp_input, axis=None, keepdims=None, reduction_axes=None, keep_dims=None\n )\n\n| **Deprecated:** SOME ARGUMENTS ARE DEPRECATED: `(keep_dims)`. They will be removed in a future version. Instructions for updating: keep_dims is deprecated, use keepdims instead\n| **Deprecated:** SOME ARGUMENTS ARE DEPRECATED: `(reduction_axes)`. They will be removed in a future version. Instructions for updating: reduction_axes is deprecated, use axis instead\n\nThis is the reduction operation for the elementwise [`tf.sparse.maximum`](../../../tf/sparse/maximum) op.\n\nThis Op takes a SparseTensor and is the sparse counterpart to\n[`tf.reduce_max()`](../../../tf/math/reduce_max). In particular, this Op also returns a dense `Tensor`\ninstead of a sparse one.\n| **Note:** A gradient is not defined for this function, so it can't be used in training models that need gradient descent.\n\nReduces `sp_input` along the dimensions given in `reduction_axes`. Unless\n`keepdims` is true, the rank of the tensor is reduced by 1 for each entry in\n`reduction_axes`. If `keepdims` is true, the reduced dimensions are retained\nwith length 1.\n\nIf `reduction_axes` has no entries, all dimensions are reduced, and a tensor\nwith a single element is returned. Additionally, the axes can be negative,\nsimilar to the indexing rules in Python.\n\nThe values not defined in `sp_input` don't participate in the reduce max,\nas opposed to be implicitly assumed 0 -- hence it can return negative values\nfor sparse `reduction_axes`. But, in case there are no values in\n`reduction_axes`, it will reduce to 0. See second example below.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| For example ----------- ||\n|---|---|\n| \u003cbr /\u003e 'x' represents \\[\\[1, ?, 2\\] ============================ \\[?, 3, ?\\]\\] ============= where ? is implicitly-zero. =========================== x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 2, 3], [2, 3]) tf.sparse.reduce_max(x) \u003ctf.Tensor: shape=(), dtype=int32, numpy=3\u003e tf.sparse.reduce_max(x, 0) \u003ctf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 2], dtype=int32)\u003e tf.sparse.reduce_max(x, 1) \u003ctf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3], dtype=int32)\u003e tf.sparse.reduce_max(x, 1, keepdims=True) \u003ctf.Tensor: shape=(2, 1), dtype=int32, numpy= array([[2], [3]], dtype=int32)\u003e tf.sparse.reduce_max(x, [0, 1]) \u003ctf.Tensor: shape=(), dtype=int32, numpy=3\u003e 'y' represents \\[\\[-7, ?\\] ========================== \\[ 4, 3\\] ========= \\[ ?, ?\\] ========= y = tf.sparse.SparseTensor([[0, 0,], [1, 0], [1, 1]], [-7, 4, 3], [3, 2]) tf.sparse.reduce_max(y, 1) \u003ctf.Tensor: shape=(3,), dtype=int32, numpy=array([-7, 4, 0], dtype=int32)\u003e \u003cbr /\u003e ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------|--------------------------------------------------------------------------------------------|\n| `sp_input` | The SparseTensor to reduce. Should have numeric type. |\n| `axis` | The dimensions to reduce; list or scalar. If `None` (the default), reduces all dimensions. |\n| `keepdims` | If true, retain reduced dimensions with length 1. |\n| `reduction_axes` | Deprecated name of `axis`. |\n| `keep_dims` | Deprecated alias for `keepdims`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The reduced Tensor. ||\n\n\u003cbr /\u003e"]]