View source on GitHub |
This wrapper allows to apply a layer to every temporal slice of an input.
Inherits From: Wrapper
, Layer
, Module
tf.keras.layers.TimeDistributed(
layer, **kwargs
)
Every input should be at least 3D, and the dimension of index one of the first input will be considered to be the temporal dimension.
Consider a batch of 32 video samples, where each sample is a 128x128 RGB
image with channels_last
data format, across 10 timesteps.
The batch input shape is (32, 10, 128, 128, 3)
.
You can then use TimeDistributed
to apply the same Conv2D
layer to each
of the 10 timesteps, independently:
inputs = tf.keras.Input(shape=(10, 128, 128, 3))
conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3))
outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs)
outputs.shape
TensorShape([None, 10, 126, 126, 64])
Because TimeDistributed
applies the same instance of Conv2D
to each of
the timestamps, the same set of weights are used at each timestamp.
Args | |
---|---|
layer
|
a tf.keras.layers.Layer instance.
|
Raises | |
---|---|
ValueError
|
If not initialized with a tf.keras.layers.Layer instance.
|