View source on GitHub
|
Computes focal cross-entropy loss between true labels and predictions.
Inherits From: Loss
tf.keras.losses.BinaryFocalCrossentropy(
apply_class_balancing=False,
alpha=0.25,
gamma=2.0,
from_logits=False,
label_smoothing=0.0,
axis=-1,
reduction=losses_utils.ReductionV2.AUTO,
name='binary_focal_crossentropy'
)
Binary cross-entropy loss is often used for binary (0 or 1) classification tasks. The loss function requires the following inputs:
y_true(true label): This is either 0 or 1.y_pred(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] whenfrom_logits=True) or a probability (i.e, value in [0., 1.] whenfrom_logits=False).
According to Lin et al., 2018, it helps to apply a "focal factor" to down-weight easy examples and focus more on hard examples. By default, the focal tensor is computed as follows:
focal_factor = (1 - output) ** gamma for class 1
focal_factor = output ** gamma for class 0
where gamma is a focusing parameter. When gamma=0, this function is
equivalent to the binary crossentropy loss.
With the compile() API:
model.compile(
loss=tf.keras.losses.BinaryFocalCrossentropy(gamma=2.0, from_logits=True),
....
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)y_true = [0, 1, 0, 0]y_pred = [-18.6, 0.51, 2.94, -12.8]loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=2,from_logits=True)loss(y_true, y_pred).numpy()0.691
# Apply class weightloss = tf.keras.losses.BinaryFocalCrossentropy(apply_class_balancing=True, gamma=2, from_logits=True)loss(y_true, y_pred).numpy()0.51
# Example 2: (batch_size = 2, number of samples = 4)y_true = [[0, 1], [0, 0]]y_pred = [[-18.6, 0.51], [2.94, -12.8]]# Using default 'auto'/'sum_over_batch_size' reduction type.loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=3,from_logits=True)loss(y_true, y_pred).numpy()0.647
# Apply class weightloss = tf.keras.losses.BinaryFocalCrossentropy(apply_class_balancing=True, gamma=3, from_logits=True)loss(y_true, y_pred).numpy()0.482
# Using 'sample_weight' attribute with focal effectloss = tf.keras.losses.BinaryFocalCrossentropy(gamma=3,from_logits=True)loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()0.133
# Apply class weightloss = tf.keras.losses.BinaryFocalCrossentropy(apply_class_balancing=True, gamma=3, from_logits=True)loss(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()0.097
# Using 'sum' reduction` type.loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=4,from_logits=True,reduction=tf.keras.losses.Reduction.SUM)loss(y_true, y_pred).numpy()1.222
# Apply class weightloss = tf.keras.losses.BinaryFocalCrossentropy(apply_class_balancing=True, gamma=4, from_logits=True,reduction=tf.keras.losses.Reduction.SUM)loss(y_true, y_pred).numpy()0.914
# Using 'none' reduction type.loss = tf.keras.losses.BinaryFocalCrossentropy(gamma=5, from_logits=True,reduction=tf.keras.losses.Reduction.NONE)loss(y_true, y_pred).numpy()array([0.0017 1.1561], dtype=float32)
# Apply class weightloss = tf.keras.losses.BinaryFocalCrossentropy(apply_class_balancing=True, gamma=5, from_logits=True,reduction=tf.keras.losses.Reduction.NONE)loss(y_true, y_pred).numpy()array([0.0004 0.8670], dtype=float32)
Args | |
|---|---|
apply_class_balancing
|
A bool, whether to apply weight balancing on the binary classes 0 and 1. |
alpha
|
A weight balancing factor for class 1, default is 0.25 as
mentioned in reference Lin et al., 2018. The weight for class 0 is
1.0 - alpha.
|
gamma
|
A focusing parameter used to compute the focal factor, default is
2.0 as mentioned in the reference
Lin et al., 2018.
|
from_logits
|
Whether to interpret y_pred as a tensor of
logit values. By default, we
assume that y_pred are probabilities (i.e., values in [0, 1]).
|
label_smoothing
|
Float in [0, 1]. When 0, no smoothing occurs.
When > 0, we compute the loss between the predicted labels and a
smoothed version of the true labels, where the smoothing squeezes
the labels towards 0.5. Larger values of label_smoothing
correspond to heavier smoothing.
|
axis
|
The axis along which to compute crossentropy (the features axis).
Defaults to -1.
|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults to SUM_OVER_BATCH_SIZE. When used under a
tf.distribute.Strategy, except via Model.compile() and
Model.fit(), using AUTO or SUM_OVER_BATCH_SIZE
will raise an error. Please see this custom training tutorial
for more details.
|
name
|
Name for the op. Defaults to 'binary_focal_crossentropy'. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A keras.losses.Loss instance.
|
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN],
except sparse loss functions such as sparse categorical
crossentropy where shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for
the loss. If a scalar is provided, then the loss is simply
scaled by the given value. If sample_weight is a tensor of
size [batch_size], then the total loss for each sample of the
batch is rescaled by the corresponding element in the
sample_weight vector. If the shape of sample_weight is
[batch_size, d0, .. dN-1] (or can be broadcasted to this
shape), then each loss element of y_pred is scaled by the
corresponding value of sample_weight. (Note ondN-1: all loss
functions reduce by 1 dimension, usually axis=-1.)
|
| Returns | |
|---|---|
Weighted loss float Tensor. If reduction is NONE, this has
shape [batch_size, d0, .. dN-1]; otherwise, it is scalar.
(Note dN-1 because all loss functions reduce by 1 dimension,
usually axis=-1.)
|
| Raises | |
|---|---|
ValueError
|
If the shape of sample_weight is invalid.
|
View source on GitHub