tf.keras.metrics.sparse_categorical_crossentropy
Stay organized with collections
Save and categorize content based on your preferences.
Computes the sparse categorical crossentropy loss.
tf.keras.metrics.sparse_categorical_crossentropy(
y_true, y_pred, from_logits=False, axis=-1, ignore_class=None
)
Standalone usage:
y_true = [1, 2]
y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred)
assert loss.shape == (2,)
loss.numpy()
array([0.0513, 2.303], dtype=float32)
y_true = [[[ 0, 2],
[-1, -1]],
[[ 0, 2],
[-1, -1]]]
y_pred = [[[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]],
[[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]],
[[[1.0, 0.0, 0.0], [0.0, 0.5, 0.5]],
[[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]]]
loss = tf.keras.losses.sparse_categorical_crossentropy(
y_true, y_pred, ignore_class=-1)
loss.numpy()
array([[[2.3841855e-07, 2.3841855e-07],
[0.0000000e+00, 0.0000000e+00]],
[[2.3841855e-07, 6.9314730e-01],
[0.0000000e+00, 0.0000000e+00]]], dtype=float32)
Args |
y_true
|
Ground truth values.
|
y_pred
|
The predicted values.
|
from_logits
|
Whether y_pred is expected to be a logits tensor. By
default, we assume that y_pred encodes a probability distribution.
|
axis
|
Defaults to -1. The dimension along which the entropy is
computed.
|
ignore_class
|
Optional integer. The ID of a class to be ignored during
loss computation. This is useful, for example, in segmentation
problems featuring a "void" class (commonly -1 or 255) in
segmentation maps. By default (ignore_class=None ), all classes are
considered.
|
Returns |
Sparse categorical crossentropy loss value.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.metrics.sparse_categorical_crossentropy\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.14.0/keras/losses.py#L2403-L2460) |\n\nComputes the sparse categorical crossentropy loss.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.losses.sparse_categorical_crossentropy`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_categorical_crossentropy), [`tf.losses.sparse_categorical_crossentropy`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_categorical_crossentropy), [`tf.metrics.sparse_categorical_crossentropy`](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/sparse_categorical_crossentropy)\n\n\u003cbr /\u003e\n\n tf.keras.metrics.sparse_categorical_crossentropy(\n y_true, y_pred, from_logits=False, axis=-1, ignore_class=None\n )\n\n#### Standalone usage:\n\n y_true = [1, 2]\n y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]\n loss = tf.keras.losses.sparse_categorical_crossentropy(y_true, y_pred)\n assert loss.shape == (2,)\n loss.numpy()\n array([0.0513, 2.303], dtype=float32)\n\n y_true = [[[ 0, 2],\n [-1, -1]],\n [[ 0, 2],\n [-1, -1]]]\n y_pred = [[[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0]],\n [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]],\n [[[1.0, 0.0, 0.0], [0.0, 0.5, 0.5]],\n [[0.2, 0.5, 0.3], [0.0, 1.0, 0.0]]]]\n loss = tf.keras.losses.sparse_categorical_crossentropy(\n y_true, y_pred, ignore_class=-1)\n loss.numpy()\n array([[[2.3841855e-07, 2.3841855e-07],\n [0.0000000e+00, 0.0000000e+00]],\n [[2.3841855e-07, 6.9314730e-01],\n [0.0000000e+00, 0.0000000e+00]]], dtype=float32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. |\n| `y_pred` | The predicted values. |\n| `from_logits` | Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution. |\n| `axis` | Defaults to -1. The dimension along which the entropy is computed. |\n| `ignore_class` | Optional integer. The ID of a class to be ignored during loss computation. This is useful, for example, in segmentation problems featuring a \"void\" class (commonly -1 or 255) in segmentation maps. By default (`ignore_class=None`), all classes are considered. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Sparse categorical crossentropy loss value. ||\n\n\u003cbr /\u003e"]]