Math Operations.
TensorFlow provides a variety of math functions including:
- Basic arithmetic operators and trigonometric functions.
- Special math functions (like:
tf.math.igammaandtf.math.zeta) - Complex number functions (like:
tf.math.imagandtf.math.angle) - Reductions and scans (like:
tf.math.reduce_meanandtf.math.cumsum) - Segment functions (like:
tf.math.segment_sum)
See: tf.linalg for matrix and tensor functions.
About Segmentation
TensorFlow provides several operations that you can use to perform common
math computations on tensor segments.
Here a segmentation is a partitioning of a tensor along
the first dimension, i.e. it defines a mapping from the first dimension onto
segment_ids. The segment_ids tensor should be the size of
the first dimension, d0, with consecutive IDs in the range 0 to k,
where k<d0.
In particular, a segmentation of a matrix tensor is a mapping of rows to
segments.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.math.segment_sum(c, tf.constant([0, 0, 1]))
# ==> [[0 0 0 0]
# [5 6 7 8]]
The standard segment_* functions assert that the segment indices are sorted.
If you have unsorted indices use the equivalent unsorted_segment_ function.
These functions take an additional argument num_segments so that the output
tensor can be efficiently allocated.
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])
tf.math.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2)
# ==> [[ 6, 8, 10, 12],
# [-1, -2, -3, -4]]
Modules
special module: Public API for tf.math.special namespace.
Functions
abs(...): Computes the absolute value of a tensor.
accumulate_n(...): Returns the element-wise sum of a list of tensors. (deprecated)
acos(...): Computes acos of x element-wise.
acosh(...): Computes inverse hyperbolic cosine of x element-wise.
add(...): Returns x + y element-wise.
add_n(...): Returns the element-wise sum of a list of tensors.
angle(...): Returns the element-wise argument of a complex (or real) tensor.
approx_max_k(...): Returns max k values and their indices of the input operand in an approximate manner.
approx_min_k(...): Returns min k values and their indices of the input operand in an approximate manner.
argmax(...): Returns the index with the largest value across axes of a tensor.
argmin(...): Returns the index with the smallest value across axes of a tensor.
asin(...): Computes the trignometric inverse sine of x element-wise.
asinh(...): Computes inverse hyperbolic sine of x element-wise.
atan(...): Computes the trignometric inverse tangent of x element-wise.
atan2(...): Computes arctangent of y/x element-wise, respecting signs of the arguments.
atanh(...): Computes inverse hyperbolic tangent of x element-wise.
bessel_i0(...): Computes the Bessel i0 function of x element-wise.
bessel_i0e(...): Computes the Bessel i0e function of x element-wise.
bessel_i1(...): Computes the Bessel i1 function of x element-wise.
bessel_i1e(...): Computes the Bessel i1e function of x element-wise.
betainc(...): Compute the regularized incomplete beta integral \(I_x(a, b)\).
bincount(...): Counts the number of occurrences of each value in an integer array.
ceil(...): Return the ceiling of the input, element-wise.
confusion_matrix(...): Computes the confusion matrix from predictions and labels.
conj(...): Returns the complex conjugate of a complex number.
cos(...): Computes cos of x element-wise.
cosh(...): Computes hyperbolic cosine of x element-wise.
count_nonzero(...): Computes number of nonzero elements across dimensions of a tensor.
cumprod(...): Compute the cumulative product of the tensor x along axis.
cumsum(...): Compute the cumulative sum of the tensor x along axis.
cumulative_logsumexp(...): Compute the cumulative log-sum-exp of the tensor x along axis.
digamma(...): Computes Psi, the derivative of Lgamma (the log of the absolute value of
divide(...): Computes Python style division of x by y.
divide_no_nan(...): Computes a safe divide which returns 0 if y (denominator) is zero.
equal(...): Returns the truth value of (x == y) element-wise.
erf(...): Computes the Gauss error function of x element-wise. In statistics, for non-negative values of \(x\), the error function has the following interpretation: for a random variable \(Y\) that is normally distributed with mean 0 and variance \(1/\sqrt{2}\), \(erf(x)\) is the probability that \(Y\) falls in the range \([−x, x]\).
erfc(...): Computes the complementary error function of x element-wise.
erfcinv(...): Computes the inverse of complementary error function.
erfinv(...): Compute inverse error function.
exp(...): Computes exponential of x element-wise. \(y = e^x\).
expm1(...): Computes exp(x) - 1 element-wise.
floor(...): Returns element-wise largest integer not greater than x.
floordiv(...): Divides x / y elementwise, rounding toward the most negative integer.
floormod(...): Returns element-wise remainder of division.
greater(...): Returns the truth value of (x > y) element-wise.
greater_equal(...): Returns the truth value of (x >= y) element-wise.
igamma(...): Compute the lower regularized incomplete Gamma function P(a, x).
igammac(...): Compute the upper regularized incomplete Gamma function Q(a, x).
imag(...): Returns the imaginary part of a complex (or real) tensor.
in_top_k(...): Outputs whether the targets are in the top K predictions.
invert_permutation(...): Computes the inverse permutation of a tensor.
is_finite(...): Returns which elements of x are finite.
is_inf(...): Returns which elements of x are Inf.
is_nan(...): Returns which elements of x are NaN.
is_non_decreasing(...): Returns True if x is non-decreasing.
is_strictly_increasing(...): Returns True if x is strictly increasing.
l2_normalize(...): Normalizes along dimension axis using an L2 norm. (deprecated arguments)
lbeta(...): Computes \(ln(|Beta(x)|)\), reducing along the last dimension.
less(...): Returns the truth value of (x < y) element-wise.
less_equal(...): Returns the truth value of (x <= y) element-wise.
lgamma(...): Computes the log of the absolute value of Gamma(x) element-wise.
log(...): Computes natural logarithm of x element-wise.
log1p(...): Computes natural logarithm of (1 + x) element-wise.
log_sigmoid(...): Computes log sigmoid of x element-wise.
log_softmax(...): Computes log softmax activations.
logical_and(...): Returns the truth value of x AND y element-wise.
logical_not(...): Returns the truth value of NOT x element-wise.
logical_or(...): Returns the truth value of x OR y element-wise.
logical_xor(...): Logical XOR function.
maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.
minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...): Returns element-wise remainder of division.
multiply(...): Returns an element-wise x * y.
multiply_no_nan(...): Computes the product of x and y and returns 0 if the y is zero, even if x is NaN or infinite.
ndtri(...): Compute quantile of Standard Normal.
negative(...): Computes numerical negative value element-wise.
nextafter(...): Returns the next representable value of x1 in the direction of x2, element-wise.
not_equal(...): Returns the truth value of (x != y) element-wise.
polygamma(...): Compute the polygamma function \(\psi^{(n)}(x)\).
polyval(...): Computes the elementwise value of a polynomial.
pow(...): Computes the power of one value to another.
real(...): Returns the real part of a complex (or real) tensor.
reciprocal(...): Computes the reciprocal of x element-wise.
reciprocal_no_nan(...): Performs a safe reciprocal operation, element wise.
reduce_all(...): Computes tf.math.logical_and of elements across dimensions of a tensor.
reduce_any(...): Computes tf.math.logical_or of elements across dimensions of a tensor.
reduce_euclidean_norm(...): Computes the Euclidean norm of elements across dimensions of a tensor.
reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))).
reduce_max(...): Computes tf.math.maximum of elements across dimensions of a tensor.
reduce_mean(...): Computes the mean of elements across dimensions of a tensor.
reduce_min(...): Computes the tf.math.minimum of elements across dimensions of a tensor.
reduce_prod(...): Computes tf.math.multiply of elements across dimensions of a tensor.
reduce_std(...): Computes the standard deviation of elements across dimensions of a tensor.
reduce_sum(...): Computes the sum of elements across dimensions of a tensor.
reduce_variance(...): Computes the variance of elements across dimensions of a tensor.
rint(...): Returns element-wise integer closest to x.
round(...): Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...): Computes reciprocal of square root of x element-wise.
scalar_mul(...): Multiplies a scalar times a Tensor or IndexedSlices object.
segment_max(...): Computes the maximum along segments of a tensor.
segment_mean(...): Computes the mean along segments of a tensor.
segment_min(...): Computes the minimum along segments of a tensor.
segment_prod(...): Computes the product along segments of a tensor.
segment_sum(...): Computes the sum along segments of a tensor.
sigmoid(...): Computes sigmoid of x element-wise.
sign(...): Returns an element-wise indication of the sign of a number.
sin(...): Computes sine of x element-wise.
sinh(...): Computes hyperbolic sine of x element-wise.
sobol_sample(...): Generates points from the Sobol sequence.
softmax(...): Computes softmax activations.
softplus(...): Computes elementwise softplus: softplus(x) = log(exp(x) + 1).
softsign(...): Computes softsign: features / (abs(features) + 1).
sqrt(...): Computes element-wise square root of the input tensor.
square(...): Computes square of x element-wise.
squared_difference(...): Returns conj(x - y)(x - y) element-wise.
subtract(...): Returns x - y element-wise.
tan(...): Computes tan of x element-wise.
tanh(...): Computes hyperbolic tangent of x element-wise.
top_k(...): Finds values and indices of the k largest entries for the last dimension.
truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).
unsorted_segment_max(...): Computes the maximum along segments of a tensor.
unsorted_segment_mean(...): Computes the mean along segments of a tensor.
unsorted_segment_min(...): Computes the minimum along segments of a tensor.
unsorted_segment_prod(...): Computes the product along segments of a tensor.
unsorted_segment_sqrt_n(...): Computes the sum along segments of a tensor divided by the sqrt(N).
unsorted_segment_sum(...): Computes the sum along segments of a tensor.
xdivy(...): Computes x / y.
xlog1py(...): Compute x * log1p(y).
xlogy(...): Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
zero_fraction(...): Returns the fraction of zeros in value.
zeta(...): Compute the Hurwitz zeta function \(\zeta(x, q)\).