View source on GitHub |
An in-process tf.data service worker server.
tf.data.experimental.service.WorkerServer(
port, dispatcher_address, worker_address=None, protocol=None, start=True
)
A tf.data.experimental.service.WorkerServer
performs tf.data.Dataset
processing for user-defined datasets, and provides the resulting elements over
RPC. A worker is associated with a single
tf.data.experimental.service.DispatchServer
.
dispatcher = tf.data.experimental.service.DispatchServer(port=0)
dispatcher_address = dispatcher.target.split("://")[1]
worker = tf.data.experimental.service.WorkerServer(
port=0, dispatcher_address=dispatcher_address)
dataset = tf.data.Dataset.range(10)
dataset = dataset.apply(tf.data.experimental.service.distribute(
processing_mode="parallel_epochs", service=dispatcher.target))
print(list(dataset.as_numpy_iterator()))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
When starting a dedicated tf.data worker process, use join() to block indefinitely after starting up the server.
worker = tf.data.experimental.service.WorkerServer(
port=5051, dispatcher_address="grpc://localhost:5050")
worker.join()
Args | |
---|---|
port
|
Specifies the port to bind to. A value of 0 indicates that the worker can bind to any available port. |
dispatcher_address
|
Specifies the address of the dispatcher. |
worker_address
|
(Optional.) Specifies the address of the worker server.
This address is passed to the dispatcher so that the dispatcher can
tell clients how to connect to this worker. Defaults to
"localhost:%port%" , where %port% will be replaced with the port used
by the worker.
|
protocol
|
(Optional.) Specifies the protocol to be used by the server.
Acceptable values include "grpc", "grpc+local" . Defaults to "grpc" .
|
start
|
(Optional.) Boolean, indicating whether to start the server after
creating it. Defaults to True .
|
Raises | |
---|---|
tf.errors.OpError
|
Or one of its subclasses if an error occurs while creating the TensorFlow server. |
Methods
join
join()
Blocks until the server has shut down.
This is useful when starting a dedicated worker process.
worker_server = tf.data.experimental.service.WorkerServer(
port=5051, dispatcher_address="grpc://localhost:5050")
worker_server.join()
This method currently blocks forever.
Raises | |
---|---|
tf.errors.OpError
|
Or one of its subclasses if an error occurs while joining the server. |
start
start()
Starts this server.
Raises | |
---|---|
tf.errors.OpError
|
Or one of its subclasses if an error occurs while starting the server. |