TensorFlow 1 version
|
View source on GitHub
|
Initializer that generates tensors with a normal distribution.
Inherits From: random_normal_initializer, Initializer
tf.keras.initializers.RandomNormal(
mean=0.0, stddev=0.05, seed=None
)
Also available via the shortcut function
tf.keras.initializers.random_normal.
Examples:
# Standalone usage:initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.)layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Args | |
|---|---|
mean
|
a python scalar or a scalar tensor. Mean of the random values to generate. |
stddev
|
a python scalar or a scalar tensor. Standard deviation of the random values to generate. |
seed
|
A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config
|
A Python dictionary.
It will typically be the output of get_config.
|
| Returns | |
|---|---|
| An Initializer instance. |
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. |
__call__
__call__(
shape, dtype=None
)
Returns a tensor object initialized to random normal values.
| Args | |
|---|---|
shape
|
Shape of the tensor. |
dtype
|
Optional dtype of the tensor. Only floating point types are
supported. If not specified, tf.keras.backend.floatx() is used,
which default to float32 unless you configured it otherwise
(via tf.keras.backend.set_floatx(float_dtype))
|
TensorFlow 1 version
View source on GitHub