tf.keras.layers.MaxPool1D
Stay organized with collections
Save and categorize content based on your preferences.
Max pooling operation for 1D temporal data.
tf.keras.layers.MaxPool1D(
pool_size=2, strides=None, padding='valid', data_format='channels_last',
**kwargs
)
Downsamples the input representation by taking the maximum value over the
window defined by pool_size
. The window is shifted by strides
. The
resulting output when using "valid" padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
strides=1, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=
array([[[2.],
[3.],
[4.],
[5.]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
strides=2, padding='valid')
max_pool_1d(x)
<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=
array([[[2.],
[4.]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])
x = tf.reshape(x, [1, 5, 1])
max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,
strides=1, padding='same')
max_pool_1d(x)
<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=
array([[[2.],
[3.],
[4.],
[5.],
[5.]]], dtype=float32)>
Arguments |
pool_size
|
Integer, size of the max pooling window.
|
strides
|
Integer, or None. Specifies how much the pooling window moves
for each pooling step.
If None, it will default to pool_size .
|
padding
|
One of "valid" or "same" (case-insensitive).
"valid" adds no padding. "same" adds padding such that if the stride
is 1, the output shape is the same as the input shape.
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, steps)
.
Output shape:
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, downsampled_steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, downsampled_steps)
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.MaxPool1D\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/layers/MaxPool1D) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.3.0/tensorflow/python/keras/layers/pooling.py#L112-L199) |\n\nMax pooling operation for 1D temporal data.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.MaxPooling1D`](/api_docs/python/tf/keras/layers/MaxPool1D)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.MaxPool1D`](/api_docs/python/tf/keras/layers/MaxPool1D), [`tf.compat.v1.keras.layers.MaxPooling1D`](/api_docs/python/tf/keras/layers/MaxPool1D)\n\n\u003cbr /\u003e\n\n tf.keras.layers.MaxPool1D(\n pool_size=2, strides=None, padding='valid', data_format='channels_last',\n **kwargs\n )\n\nDownsamples the input representation by taking the maximum value over the\nwindow defined by `pool_size`. The window is shifted by `strides`. The\nresulting output when using \"valid\" padding option has a shape of:\n`output_shape = (input_shape - pool_size + 1) / strides)`\n\nThe resulting output shape when using the \"same\" padding option is:\n`output_shape = input_shape / strides`\n\nFor example, for strides=1 and padding=\"valid\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,\n strides=1, padding='valid')\n max_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=\n array([[[2.],\n [3.],\n [4.],\n [5.]]], dtype=float32)\u003e\n\nFor example, for strides=2 and padding=\"valid\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,\n strides=2, padding='valid')\n max_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=\n array([[[2.],\n [4.]]], dtype=float32)\u003e\n\nFor example, for strides=1 and padding=\"same\": \n\n x = tf.constant([1., 2., 3., 4., 5.])\n x = tf.reshape(x, [1, 5, 1])\n max_pool_1d = tf.keras.layers.MaxPooling1D(pool_size=2,\n strides=1, padding='same')\n max_pool_1d(x)\n \u003ctf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=\n array([[[2.],\n [3.],\n [4.],\n [5.],\n [5.]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `pool_size` | Integer, size of the max pooling window. |\n| `strides` | Integer, or None. Specifies how much the pooling window moves for each pooling step. If None, it will default to `pool_size`. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). \"valid\" adds no padding. \"same\" adds padding such that if the stride is 1, the output shape is the same as the input shape. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, steps, features)`.\n- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, steps)`.\n\n#### Output shape:\n\n- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, downsampled_steps, features)`.\n- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, downsampled_steps)`."]]