tf.keras.layers.MaxPool1D
Stay organized with collections
Save and categorize content based on your preferences.
Max pooling operation for temporal data.
tf.keras.layers.MaxPool1D(
pool_size=2, strides=None, padding='valid', data_format='channels_last',
**kwargs
)
Arguments |
pool_size
|
Integer, size of the max pooling windows.
|
strides
|
Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to pool_size .
|
padding
|
One of "valid" or "same" (case-insensitive).
|
data_format
|
A string,
one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, steps, features) while channels_first
corresponds to inputs with shape
(batch, features, steps) .
|
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, steps)
.
Output shape:
- If
data_format='channels_last'
:
3D tensor with shape (batch_size, downsampled_steps, features)
.
- If
data_format='channels_first'
:
3D tensor with shape (batch_size, features, downsampled_steps)
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.layers.MaxPool1D\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/layers/MaxPool1D) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/layers/pooling.py#L112-L151) |\n\nMax pooling operation for temporal data.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.MaxPooling1D`](/api_docs/python/tf/keras/layers/MaxPool1D)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.MaxPool1D`](/api_docs/python/tf/keras/layers/MaxPool1D), [`tf.compat.v1.keras.layers.MaxPooling1D`](/api_docs/python/tf/keras/layers/MaxPool1D), \\`tf.compat.v2.keras.layers.MaxPool1D\\`, \\`tf.compat.v2.keras.layers.MaxPooling1D\\`\n\n\u003cbr /\u003e\n\n tf.keras.layers.MaxPool1D(\n pool_size=2, strides=None, padding='valid', data_format='channels_last',\n **kwargs\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `pool_size` | Integer, size of the max pooling windows. |\n| `strides` | Integer, or None. Factor by which to downscale. E.g. 2 will halve the input. If None, it will default to `pool_size`. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, steps, features)` while `channels_first` corresponds to inputs with shape `(batch, features, steps)`. |\n\n\u003cbr /\u003e\n\n#### Input shape:\n\n- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, steps, features)`.\n- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, steps)`.\n\n#### Output shape:\n\n- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, downsampled_steps, features)`.\n- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, features, downsampled_steps)`."]]