tf.contrib.layers.transform_features
Returns transformed features based on features columns passed in.
tf.contrib.layers.transform_features(
features, feature_columns
)
Example:
columns_to_tensor = transform_features(features=features,
feature_columns=feature_columns)
# Where my_features are:
# Define features and transformations
sparse_feature_a = sparse_column_with_keys(
column_name="sparse_feature_a", keys=["AB", "CD", ...])
embedding_feature_a = embedding_column(
sparse_id_column=sparse_feature_a, dimension=3, combiner="sum")
sparse_feature_b = sparse_column_with_hash_bucket(
column_name="sparse_feature_b", hash_bucket_size=1000)
embedding_feature_b = embedding_column(
sparse_id_column=sparse_feature_b, dimension=16, combiner="sum")
crossed_feature_a_x_b = crossed_column(
columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000)
real_feature = real_valued_column("real_feature")
real_feature_buckets = bucketized_column(
source_column=real_feature, boundaries=[...])
feature_columns = [embedding_feature_b,
real_feature_buckets,
embedding_feature_a]
Args |
features
|
A dictionary of features.
|
feature_columns
|
An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
|
Returns |
A dict mapping FeatureColumn to Tensor and SparseTensor values.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]