Computes the clustering loss.
tf.contrib.losses.metric_learning.cluster_loss(
labels, embeddings, margin_multiplier, enable_pam_finetuning=True,
margin_type='nmi', print_losses=False
)
The following structured margins are supported: nmi: normalized mutual information ami: adjusted mutual information ari: adjusted random index vmeasure: v-measure const: indicator checking whether the two clusterings are the same.
Args | |
---|---|
labels
|
2-D Tensor of labels of shape [batch size, 1] |
embeddings
|
2-D Tensor of embeddings of shape [batch size, embedding dimension]. Embeddings should be l2 normalized. |
margin_multiplier
|
float32 scalar. multiplier on the structured margin term See section 3.2 of paper for discussion. |
enable_pam_finetuning
|
Boolean, Whether to run local pam refinement. See section 3.4 of paper for discussion. |
margin_type
|
Type of structured margin to use. See section 3.2 of paper for discussion. Can be 'nmi', 'ami', 'ari', 'vmeasure', 'const'. |
print_losses
|
Boolean. Option to print the loss. |
Paper: https://arxiv.org/abs/1612.01213
Returns | |
---|---|
clustering_loss
|
A float32 scalar Tensor .
|
Raises | |
---|---|
ImportError
|
If sklearn dependency is not installed. |