tf.contrib.estimator.clip_gradients_by_norm
Returns an optimizer which clips gradients before applying them.
tf.contrib.estimator.clip_gradients_by_norm(
optimizer, clip_norm
)
Example:
optimizer = tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001)
optimizer = tf.contrib.estimator.clip_gradients_by_norm(
optimizer, clip_norm)
estimator = tf.estimator.DNNClassifier(
feature_columns=[...],
hidden_units=[1024, 512, 256],
optimizer=optimizer)
Args |
optimizer
|
An tf.Optimizer object to apply gradients.
|
clip_norm
|
A 0-D (scalar) Tensor > 0. The clipping ratio.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]