Computes the Huber loss between y_true
and y_pred
.
View aliases
Compat aliases for migration
See Migration guide for more details.
tf.compat.v1.keras.losses.Huber
, `tf.compat.v2.keras.losses.Huber`, `tf.compat.v2.losses.Huber`
tf.keras.losses.Huber(
delta=1.0, reduction=losses_utils.ReductionV2.AUTO, name='huber_loss'
)
For each value x in error = y_true - y_pred
:
loss = 0.5 * x^2 if |x| <= d
loss = 0.5 * d^2 + d * (|x| - d) if |x| > d
where d is delta
. See: https://en.wikipedia.org/wiki/Huber_loss
Usage:
l = tf.keras.losses.Huber()
loss = l([0., 1., 1.], [1., 0., 1.])
print('Loss: ', loss.numpy()) # Loss: 0.333
Usage with the compile
API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.Huber())
Args | |
---|---|
delta
|
A float, the point where the Huber loss function changes from a quadratic to linear. |
reduction
|
(Optional) Type of tf.keras.losses.Reduction to apply to loss.
Default value is AUTO . AUTO indicates that the reduction option will
be determined by the usage context. For almost all cases this defaults to
SUM_OVER_BATCH_SIZE .
When used with tf.distribute.Strategy , outside of built-in training
loops such as tf.keras compile and fit , using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see
https://www.tensorflow.org/alpha/tutorials/distribute/training_loops
for more details on this.
|
name
|
Optional name for the op. |
Methods
from_config
@classmethod
from_config( config )
Instantiates a Loss
from its config (output of get_config()
).
Args | |
---|---|
config
|
Output of get_config() .
|
Returns | |
---|---|
A Loss instance.
|
get_config
get_config()
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args | |
---|---|
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the total loss for each sample of the batch is
rescaled by the corresponding element in the sample_weight vector. If
the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight . (Note ondN-1 : all loss
functions reduce by 1 dimension, usually axis=-1.)
|
Returns | |
---|---|
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
Raises | |
---|---|
ValueError
|
If the shape of sample_weight is invalid.
|