Google I/O returns May 18-20! Reserve space and build your schedule Register now

tf.compat.v2.random.poisson

View source on GitHub

Draws shape samples from each of the given Poisson distribution(s).

lam is the rate parameter describing the distribution(s).

Example:

samples = tf.random.poisson([10], [0.5, 1.5])
# samples has shape [10, 2], where each slice [:, 0] and [:, 1] represents
# the samples drawn from each distribution

samples = tf.random.poisson([7, 5], [12.2, 3.3])
# samples has shape [7, 5, 2], where each slice [:, :, 0] and [:, :, 1]
# represents the 7x5 samples drawn from each of the two distributions

shape A 1-D integer Tensor or Python array. The shape of the output samples to be drawn per "rate"-parameterized distribution.
lam A Tensor or Python value or N-D array of type dtype. lam provides the rate parameter(s) describing the poisson distribution(s) to sample.
dtype The type of the output: float16, float32, float64, int32 or int64.
seed A Python integer. Used to create a random seed for the distributions. See tf.compat.v1.set_random_seed for behavior.
name Optional name for the operation.

samples a Tensor of shape tf.concat([shape, tf.shape(lam)], axis=0) with values of type dtype.