tf.contrib.layers.parse_feature_columns_from_examples
Parses tf.Examples to extract tensors for given feature_columns.
tf.contrib.layers.parse_feature_columns_from_examples(
serialized, feature_columns, name=None, example_names=None
)
This is a wrapper of 'tf.io.parse_example'.
Example:
columns_to_tensor = parse_feature_columns_from_examples(
serialized=my_data,
feature_columns=my_features)
# Where my_features are:
# Define features and transformations
sparse_feature_a = sparse_column_with_keys(
column_name="sparse_feature_a", keys=["AB", "CD", ...])
embedding_feature_a = embedding_column(
sparse_id_column=sparse_feature_a, dimension=3, combiner="sum")
sparse_feature_b = sparse_column_with_hash_bucket(
column_name="sparse_feature_b", hash_bucket_size=1000)
embedding_feature_b = embedding_column(
sparse_id_column=sparse_feature_b, dimension=16, combiner="sum")
crossed_feature_a_x_b = crossed_column(
columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000)
real_feature = real_valued_column("real_feature")
real_feature_buckets = bucketized_column(
source_column=real_feature, boundaries=[...])
my_features = [embedding_feature_b, real_feature_buckets, embedding_feature_a]
Args |
serialized
|
A vector (1-D Tensor) of strings, a batch of binary
serialized Example protos.
|
feature_columns
|
An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
|
name
|
A name for this operation (optional).
|
example_names
|
A vector (1-D Tensor) of strings (optional), the names of
the serialized protos in the batch.
|
Returns |
A dict mapping FeatureColumn to Tensor and SparseTensor values.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]