tf.contrib.feature_column.sequence_categorical_column_with_hash_bucket
A sequence of categorical terms where ids are set by hashing.
tf.contrib.feature_column.sequence_categorical_column_with_hash_bucket(
key, hash_bucket_size, dtype=tf.dtypes.string
)
Pass this to embedding_column
or indicator_column
to convert sequence
categorical data into dense representation for input to sequence NN, such as
RNN.
Example:
tokens = sequence_categorical_column_with_hash_bucket(
'tokens', hash_bucket_size=1000)
tokens_embedding = embedding_column(tokens, dimension=10)
columns = [tokens_embedding]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
input_layer, sequence_length = sequence_input_layer(features, columns)
rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)
outputs, state = tf.compat.v1.nn.dynamic_rnn(
rnn_cell, inputs=input_layer, sequence_length=sequence_length)
Args |
key
|
A unique string identifying the input feature.
|
hash_bucket_size
|
An int > 1. The number of buckets.
|
dtype
|
The type of features. Only string and integer types are supported.
|
Returns |
A _SequenceCategoricalColumn .
|
Raises |
ValueError
|
hash_bucket_size is not greater than 1.
|
ValueError
|
dtype is neither string nor integer.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]