tf.keras.metrics.BinaryCrossentropy

TensorFlow 2 version View source on GitHub

Class BinaryCrossentropy

Computes the crossentropy metric between the labels and predictions.

Aliases:

This is the crossentropy metric class to be used when there are only two label classes (0 and 1).

Usage:

m = tf.keras.metrics.BinaryCrossentropy()
m.update_state([1., 0., 1., 0.], [1., 1., 1., 0.])

# EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999
# y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)
# y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON]

# Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON))
#        = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON),
#           -log(Y_MAX + EPSILON), -log(1)]
#        = [(0 + 15.33) / 2, (0 + 0) / 2]
# Reduced metric = 7.665 / 2

print('Final result: ', m.result().numpy())  # Final result: 3.833

Usage with tf.keras API:

model = tf.keras.Model(inputs, outputs)
model.compile(
    'sgd',
    loss='mse',
    metrics=[tf.keras.metrics.BinaryCrossentropy()])

__init__

View source

__init__(
    name='binary_crossentropy',
    dtype=None,
    from_logits=False,
    label_smoothing=0
)

Creates a BinaryCrossentropy instance.

Args:

  • name: (Optional) string name of the metric instance.
  • dtype: (Optional) data type of the metric result.
  • from_logits: (Optional )Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.
  • label_smoothing: (Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. label_smoothing=0.2 means that we will use a value of 0.1 for label 0 and 0.9 for label 1"

__new__

View source

__new__(
    cls,
    *args,
    **kwargs
)

Create and return a new object. See help(type) for accurate signature.

Methods

reset_states

View source

reset_states()

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

result()

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

update_state(
    y_true,
    y_pred,
    sample_weight=None
)

Accumulates metric statistics.

y_true and y_pred should have the same shape.

Args:

  • y_true: The ground truth values.
  • y_pred: The predicted values.
  • sample_weight: Optional weighting of each example. Defaults to 1. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true.

Returns:

Update op.