tf.random.multinomial
Draws samples from a multinomial distribution. (deprecated)
tf.random.multinomial(
logits, num_samples, seed=None, name=None, output_dtype=None
)
Example:
# samples has shape [1, 5], where each value is either 0 or 1 with equal
# probability.
samples = tf.random.categorical(tf.math.log([[0.5, 0.5]]), 5)
Args |
logits
|
2-D Tensor with shape [batch_size, num_classes] . Each slice
[i, :] represents the unnormalized log-probabilities for all classes.
|
num_samples
|
0-D. Number of independent samples to draw for each row slice.
|
seed
|
A Python integer. Used to create a random seed for the distribution.
See tf.compat.v1.set_random_seed for behavior.
|
name
|
Optional name for the operation.
|
output_dtype
|
integer type to use for the output. Defaults to int64.
|
Returns |
The drawn samples of shape [batch_size, num_samples] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[]]