Use SoftmaxNormal quantiles to form quadrature on K - 1
simplex. (deprecated)
tf.contrib.distributions.quadrature_scheme_softmaxnormal_quantiles(
normal_loc, normal_scale, quadrature_size, validate_args=False, name=None
)
A SoftmaxNormal
random variable Y
may be generated via
Y = SoftmaxCentered(X),
X = Normal(normal_loc, normal_scale)
Args | |
---|---|
normal_loc
|
float -like Tensor with shape [b1, ..., bB, K-1] , B>=0.
The location parameter of the Normal used to construct the SoftmaxNormal.
|
normal_scale
|
float -like Tensor . Broadcastable with normal_loc .
The scale parameter of the Normal used to construct the SoftmaxNormal.
|
quadrature_size
|
Python int scalar representing the number of quadrature
points.
|
validate_args
|
Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
|
name
|
Python str name prefixed to Ops created by this class.
|
Returns | |
---|---|
grid
|
Shape [b1, ..., bB, K, quadrature_size] Tensor representing the
convex combination of affine parameters for K components.
grid[..., :, n] is the n -th grid point, living in the K - 1 simplex.
|
probs
|
Shape [b1, ..., bB, K, quadrature_size] Tensor representing the
associated with each grid point.
|