Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.contrib.checkpoint.UniqueNameTracker

View source on GitHub

Adds dependencies on trackable objects with name hints.

Useful for creating dependencies with locally unique names.

Example usage:

class SlotManager(tf.contrib.checkpoint.Checkpointable):

  def __init__(self):
    # Create a dependency named "slotdeps" on the container.
    self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
    slotdeps = self.slotdeps
    slots = []
    slots.append(slotdeps.track(tf.Variable(3.), "x"))  # Named "x"
    slots.append(slotdeps.track(tf.Variable(4.), "y"))
    slots.append(slotdeps.track(tf.Variable(5.), "x"))  # Named "x_1"

layers

losses Aggregate losses from any Layer instances.
non_trainable_variables

non_trainable_weights

trainable

trainable_variables

trainable_weights

updates Aggregate updates from any Layer instances.
variables

weights

Methods

track

View source

Add a dependency on trackable.

Args
trackable An object to add a checkpoint dependency on.
base_name A name hint, which is uniquified to determine the dependency name.

Returns
trackable, for chaining.

Raises
ValueError If trackable is not a trackable object.

__eq__

View source

Return self==value.