Adds dependencies on trackable objects with name hints.
tf.contrib.checkpoint.UniqueNameTracker()
Useful for creating dependencies with locally unique names.
Example usage:
class SlotManager(tf.contrib.checkpoint.Checkpointable):
def __init__(self):
# Create a dependency named "slotdeps" on the container.
self.slotdeps = tf.contrib.checkpoint.UniqueNameTracker()
slotdeps = self.slotdeps
slots = []
slots.append(slotdeps.track(tf.Variable(3.), "x")) # Named "x"
slots.append(slotdeps.track(tf.Variable(4.), "y"))
slots.append(slotdeps.track(tf.Variable(5.), "x")) # Named "x_1"
Attributes | |
---|---|
layers
|
|
losses
|
Aggregate losses from any Layer instances.
|
non_trainable_variables
|
|
non_trainable_weights
|
|
trainable
|
|
trainable_variables
|
|
trainable_weights
|
|
updates
|
Aggregate updates from any Layer instances.
|
variables
|
|
weights
|
Methods
track
track(
trackable, base_name
)
Add a dependency on trackable
.
Args | |
---|---|
trackable
|
An object to add a checkpoint dependency on. |
base_name
|
A name hint, which is uniquified to determine the dependency name. |
Returns | |
---|---|
trackable , for chaining.
|
Raises | |
---|---|
ValueError
|
If trackable is not a trackable object.
|
__eq__
__eq__(
other
)
Return self==value.