MaxNorm weight constraint.
Inherits From: Constraint
View aliases
Main aliases
Compat aliases for migrationSee Migration guide for more details.
tf.compat.v1.keras.constraints.MaxNorm
, tf.compat.v1.keras.constraints.max_norm
, `tf.compat.v2.keras.constraints.MaxNorm`, `tf.compat.v2.keras.constraints.max_norm`
tf.keras.constraints.MaxNorm(
max_value=2, axis=0
)
Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value.
Arguments | |
---|---|
m
|
the maximum norm for the incoming weights. |
axis
|
integer, axis along which to calculate weight norms.
For instance, in a Dense layer the weight matrix
has shape (input_dim, output_dim) ,
set axis to 0 to constrain each weight vector
of length (input_dim,) .
In a Conv2D layer with data_format="channels_last" ,
the weight tensor has shape
(rows, cols, input_depth, output_depth) ,
set axis to [0, 1, 2]
to constrain the weights of each filter tensor of size
(rows, cols, input_depth) .
|
Methods
get_config
get_config()
__call__
__call__(
w
)
Call self as a function.