View source on GitHub
  
 | 
Optimization parameters for Adam with TPU embeddings.
tf.tpu.experimental.AdamParameters(
    learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, lazy_adam=True,
    sum_inside_sqrt=True, use_gradient_accumulation=True, clip_weight_min=None,
    clip_weight_max=None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec via the
optimization_parameters argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
    ...
    embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
        ...
        optimization_parameters=tf.tpu.experimental.AdamParameters(0.1),
        ...))
Args | |
|---|---|
learning_rate
 | 
a floating point value. The learning rate. | 
beta1
 | 
A float value. The exponential decay rate for the 1st moment estimates. | 
beta2
 | 
A float value. The exponential decay rate for the 2nd moment estimates. | 
epsilon
 | 
A small constant for numerical stability. | 
lazy_adam
 | 
Use lazy Adam instead of Adam. Lazy Adam trains faster.
Please see optimization_parameters.proto for details.
 | 
sum_inside_sqrt
 | 
This improves training speed. Please see
optimization_parameters.proto for details.
 | 
use_gradient_accumulation
 | 
setting this to False makes embedding
gradients calculation less accurate but faster. Please see
optimization_parameters.proto for details.
for details.
 | 
clip_weight_min
 | 
the minimum value to clip by; None means -infinity. | 
clip_weight_max
 | 
the maximum value to clip by; None means +infinity. | 
    View source on GitHub