# tf.keras.metrics.SquaredHinge

Computes the squared hinge metric between `y_true` and `y_pred`.

`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.

For example, if `y_true` is [-1., 1., 1.], and `y_pred` is [0.6, -0.7, -0.5] the squared hinge metric value is 2.6.

#### Usage:

``````m = tf.keras.metrics.SquaredHinge()
m.update_state([-1., 1., 1.], [0.6, -0.7, -0.5])

# result = max(0, 1-y_true * y_pred) = [1.6^2 + 1.7^2 + 1.5^2] / 3

print('Final result: ', m.result().numpy())  # Final result: 2.6
``````

Usage with tf.keras API:

``````model = tf.keras.Model(inputs, outputs)
model.compile('sgd', metrics=[tf.keras.metrics.SquaredHinge()])
``````

`fn` The metric function to wrap, with signature `fn(y_true, y_pred, **kwargs)`.
`name` (Optional) string name of the metric instance.
`dtype` (Optional) data type of the metric result.
`**kwargs` The keyword arguments that are passed on to `fn`.

## Methods

### `reset_states`

View source

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

### `result`

View source

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

### `update_state`

View source

Accumulates metric statistics.

`y_true` and `y_pred` should have the same shape.

Args
`y_true` The ground truth values.
`y_pred` The predicted values.
`sample_weight` Optional weighting of each example. Defaults to 1. Can be a `Tensor` whose rank is either 0, or the same rank as `y_true`, and must be broadcastable to `y_true`.

Returns
Update op.

[]
[]