Build a scale-and-shift function using a multi-layer neural network. (deprecated)
tf.contrib.distributions.bijectors.real_nvp_default_template(
hidden_layers, shift_only=False, activation=tf.nn.relu, name=None, *args,
**kwargs
)
This will be wrapped in a make_template to ensure the variables are only
created once. It takes the d
-dimensional input x[0:d] and returns the D-d
dimensional outputs loc
("mu") and log_scale
("alpha").
Arguments | ||
---|---|---|
hidden_layers
|
Python list -like of non-negative integer, scalars
indicating the number of units in each hidden layer. Default: [512, 512].
</td>
</tr><tr>
<td> shift_only</td>
<td>
Python boolindicating if only the shiftterm shall be
computed (i.e. NICE bijector). Default: False.
</td>
</tr><tr>
<td> activation</td>
<td>
Activation function (callable). Explicitly setting to Noneimplies a linear activation.
</td>
</tr><tr>
<td> name</td>
<td>
A name for ops managed by this function. Default:
"real_nvp_default_template".
</td>
</tr><tr>
<td> args</td>
<td>
<a href="../../../../tf/layers/dense"><code>tf.compat.v1.layers.dense</code></a> arguments.
</td>
</tr><tr>
<td> *kwargs`
|
tf.compat.v1.layers.dense keyword arguments.
|
Returns | |
---|---|
shift
|
Float -like Tensor of shift terms ("mu" in
[Papamakarios et al. (2016)][1]).
|
log_scale
|
Float -like Tensor of log(scale) terms ("alpha" in
[Papamakarios et al. (2016)][1]).
|
Raises | |
---|---|
NotImplementedError
|
if rightmost dimension of inputs is unknown prior to
graph execution.
|
References
[1]: George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Density Estimation. In Neural Information Processing Systems, 2017. https://arxiv.org/abs/1705.07057