Google I/O is a wrap! Catch up on TensorFlow sessions View sessions


View source on GitHub

Perform prediction using an exported saved model.

Analogous to _input_pipeline.predict_continuation_input_fn, but operates on a saved model rather than feeding into Estimator's predict method.

continue_from A dictionary containing the results of either an Estimator's evaluate method or filter_continuation. Used to determine the model state to make predictions starting from.
signatures The MetaGraphDef protocol buffer returned from tf.compat.v1.saved_model.loader.load. Used to determine the names of Tensors to feed and fetch. Must be from the same model as continue_from.
session The session to use. The session's graph must be the one into which tf.compat.v1.saved_model.loader.load loaded the model.
steps The number of steps to predict (scalar), starting after the evaluation or filtering. If times is specified, steps must not be; one is required.
times A [batch_size x window_size] array of integers (not a Tensor) indicating times to make predictions for. These times must be after the corresponding evaluation or filtering. If steps is specified, times must not be; one is required. If the batch dimension is omitted, it is assumed to be 1.
exogenous_features Optional dictionary. If specified, indicates exogenous features for the model to use while making the predictions. Values must have shape [batch_size x window_size x ...], where batch_size matches the batch dimension used when creating continue_from, and window_size is either the steps argument or the window_size of the times argument (depending on which was specified).

A dictionary with model-specific predictions (typically having keys "mean" and "covariance") and a feature_keys.PredictionResults.TIMES key indicating the times for which the predictions were computed.

ValueError If times or steps are misspecified.