|  TensorFlow 1 version |  View source on GitHub | 
Iterator yielding data from a Numpy array.
Inherits From: Iterator
tf.keras.preprocessing.image.NumpyArrayIterator(
    x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None,
    seed=None, data_format=None, save_to_dir=None, save_prefix='',
    save_format='png', subset=None, dtype=None
)
| Arguments | |
|---|---|
| x | Numpy array of input data or tuple. If tuple, the second elements is either another numpy array or a list of numpy arrays, each of which gets passed through as an output without any modifications. | 
| y | Numpy array of targets data. | 
| image_data_generator | Instance of ImageDataGeneratorto use for random transformations and normalization. | 
| batch_size | Integer, size of a batch. | 
| shuffle | Boolean, whether to shuffle the data between epochs. | 
| sample_weight | Numpy array of sample weights. | 
| seed | Random seed for data shuffling. | 
| data_format | String, one of channels_first,channels_last. | 
| save_to_dir | Optional directory where to save the pictures being yielded, in a viewable format. This is useful for visualizing the random transformations being applied, for debugging purposes. | 
| save_prefix | String prefix to use for saving sample
images (if save_to_diris set). | 
| save_format | Format to use for saving sample images
(if save_to_diris set). | 
| subset | Subset of data ( "training"or"validation") if
validation_split is set in ImageDataGenerator. | 
| dtype | Dtype to use for the generated arrays. | 
Methods
next
next()
For python 2.x.
Returns
The next batch.
on_epoch_end
on_epoch_end()
reset
reset()
__getitem__
__getitem__(
    idx
)
__iter__
__iter__()
__len__
__len__()