tf.keras.preprocessing.image.NumpyArrayIterator
Stay organized with collections
Save and categorize content based on your preferences.
Iterator yielding data from a Numpy array.
Inherits From: Iterator
tf.keras.preprocessing.image.NumpyArrayIterator(
x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None,
seed=None, data_format=None, save_to_dir=None, save_prefix='',
save_format='png', subset=None, dtype=None
)
Arguments |
x
|
Numpy array of input data or tuple.
If tuple, the second elements is either
another numpy array or a list of numpy arrays,
each of which gets passed
through as an output without any modifications.
|
y
|
Numpy array of targets data.
|
image_data_generator
|
Instance of ImageDataGenerator
to use for random transformations and normalization.
|
batch_size
|
Integer, size of a batch.
|
shuffle
|
Boolean, whether to shuffle the data between epochs.
|
sample_weight
|
Numpy array of sample weights.
|
seed
|
Random seed for data shuffling.
|
data_format
|
String, one of channels_first , channels_last .
|
save_to_dir
|
Optional directory where to save the pictures
being yielded, in a viewable format. This is useful
for visualizing the random transformations being
applied, for debugging purposes.
|
save_prefix
|
String prefix to use for saving sample
images (if save_to_dir is set).
|
save_format
|
Format to use for saving sample images
(if save_to_dir is set).
|
subset
|
Subset of data ("training" or "validation" ) if
validation_split is set in ImageDataGenerator.
|
dtype
|
Dtype to use for the generated arrays.
|
Methods
next
next()
For python 2.x.
Returns
The next batch.
on_epoch_end
on_epoch_end()
Method called at the end of every epoch.
reset
reset()
__getitem__
__getitem__(
idx
)
Gets batch at position index
.
Arguments |
index
|
position of the batch in the Sequence.
|
__iter__
__iter__()
Create a generator that iterate over the Sequence.
__len__
__len__()
Number of batch in the Sequence.
Returns |
The number of batches in the Sequence.
|
Class Variables
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.preprocessing.image.NumpyArrayIterator\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/preprocessing/image/NumpyArrayIterator) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/preprocessing/image.py#L231-L291) |\n\nIterator yielding data from a Numpy array.\n\nInherits From: [`Iterator`](../../../../tf/keras/preprocessing/image/Iterator)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.preprocessing.image.NumpyArrayIterator`](/api_docs/python/tf/keras/preprocessing/image/NumpyArrayIterator), \\`tf.compat.v2.keras.preprocessing.image.NumpyArrayIterator\\`\n\n\u003cbr /\u003e\n\n tf.keras.preprocessing.image.NumpyArrayIterator(\n x, y, image_data_generator, batch_size=32, shuffle=False, sample_weight=None,\n seed=None, data_format=None, save_to_dir=None, save_prefix='',\n save_format='png', subset=None, dtype=None\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | Numpy array of input data or tuple. If tuple, the second elements is either another numpy array or a list of numpy arrays, each of which gets passed through as an output without any modifications. |\n| `y` | Numpy array of targets data. |\n| `image_data_generator` | Instance of `ImageDataGenerator` to use for random transformations and normalization. |\n| `batch_size` | Integer, size of a batch. |\n| `shuffle` | Boolean, whether to shuffle the data between epochs. |\n| `sample_weight` | Numpy array of sample weights. |\n| `seed` | Random seed for data shuffling. |\n| `data_format` | String, one of `channels_first`, `channels_last`. |\n| `save_to_dir` | Optional directory where to save the pictures being yielded, in a viewable format. This is useful for visualizing the random transformations being applied, for debugging purposes. |\n| `save_prefix` | String prefix to use for saving sample images (if `save_to_dir` is set). |\n| `save_format` | Format to use for saving sample images (if `save_to_dir` is set). |\n| `subset` | Subset of data (`\"training\"` or `\"validation\"`) if validation_split is set in ImageDataGenerator. |\n| `dtype` | Dtype to use for the generated arrays. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `next`\n\n next()\n\nFor python 2.x.\n\nReturns\n=======\n\n The next batch.\n\n### `on_epoch_end`\n\n on_epoch_end()\n\nMethod called at the end of every epoch.\n\n### `reset`\n\n reset()\n\n### `__getitem__`\n\n __getitem__(\n idx\n )\n\nGets batch at position `index`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments ||\n|---------|----------------------------------------|\n| `index` | position of the batch in the Sequence. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A batch ||\n\n\u003cbr /\u003e\n\n### `__iter__`\n\n __iter__()\n\nCreate a generator that iterate over the Sequence.\n\n### `__len__`\n\n __len__()\n\nNumber of batch in the Sequence.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| The number of batches in the Sequence. ||\n\n\u003cbr /\u003e\n\nClass Variables\n---------------\n\n- `white_list_formats`"]]