tfp.distributions.quadrature_scheme_lognormal_quantiles
Stay organized with collections
Save and categorize content based on your preferences.
Use LogNormal quantiles to form quadrature on positive-reals.
tfp.distributions.quadrature_scheme_lognormal_quantiles(
loc, scale, quadrature_size, validate_args=False, name=None
)
Args |
loc
|
float -like (batch of) scalar Tensor ; the location parameter of
the LogNormal prior.
|
scale
|
float -like (batch of) scalar Tensor ; the scale parameter of
the LogNormal prior.
|
quadrature_size
|
Python int scalar representing the number of quadrature
points.
|
validate_args
|
Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
|
name
|
Python str name prefixed to Ops created by this class.
|
Returns |
grid
|
(Batch of) length-quadrature_size vectors representing the
log_rate parameters of a Poisson .
|
probs
|
(Batch of) length-quadrature_size vectors representing the
weight associate with each grid value.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.distributions.quadrature_scheme_lognormal_quantiles\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/distributions/poisson_lognormal.py#L87-L152) |\n\nUse LogNormal quantiles to form quadrature on positive-reals. \n\n tfp.distributions.quadrature_scheme_lognormal_quantiles(\n loc, scale, quadrature_size, validate_args=False, name=None\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `loc` | `float`-like (batch of) scalar `Tensor`; the location parameter of the LogNormal prior. |\n| `scale` | `float`-like (batch of) scalar `Tensor`; the scale parameter of the LogNormal prior. |\n| `quadrature_size` | Python `int` scalar representing the number of quadrature points. |\n| `validate_args` | Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. |\n| `name` | Python `str` name prefixed to Ops created by this class. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---------|-------------------------------------------------------------------------------------------------------|\n| `grid` | (Batch of) length-`quadrature_size` vectors representing the `log_rate` parameters of a `Poisson`. |\n| `probs` | (Batch of) length-`quadrature_size` vectors representing the weight associate with each `grid` value. |\n\n\u003cbr /\u003e"]]