tfp.experimental.joint_distribution_layers.AffineLayer
Stay organized with collections
Save and categorize content based on your preferences.
Affine layer.
tfp.experimental.joint_distribution_layers.AffineLayer(
weights, bias
)
This represents a linear map: y = weights @ x + bias
.
Attributes |
weights
|
A floating point Tensor with shape [out_units, in_units] .
|
bias
|
A floating point Tensor with shape [out_units] .
|
Methods
__call__
View source
__call__(
x
)
Applies the layer to an input.
Args |
x
|
A floating point Tensor with shape [in_units].
|
Returns |
y
|
A floating point Tensor with shape [out_units].
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.experimental.joint_distribution_layers.AffineLayer\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/joint_distribution_layers/layers.py#L41-L65) |\n\nAffine layer. \n\n tfp.experimental.joint_distribution_layers.AffineLayer(\n weights, bias\n )\n\nThis represents a linear map: `y = weights @ x + bias`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-----------|-------------------------------------------------------------|\n| `weights` | A floating point Tensor with shape `[out_units, in_units]`. |\n| `bias` | A floating point Tensor with shape `[out_units]`. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/joint_distribution_layers/layers.py#L55-L65) \n\n __call__(\n x\n )\n\nApplies the layer to an input.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----|--------------------------------------------------|\n| `x` | A floating point Tensor with shape \\[in_units\\]. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|-----|---------------------------------------------------|\n| `y` | A floating point Tensor with shape \\[out_units\\]. |\n\n\u003cbr /\u003e"]]