tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptationResults
Stay organized with collections
Save and categorize content based on your preferences.
Internal state of GradientBasedTrajectoryLengthAdaptation.
tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptationResults(
inner_results,
max_trajectory_length,
step,
adaptation_rate,
jitter_amount,
averaged_sq_grad,
averaged_sq_grad_adaptation_rate,
averaged_max_trajectory_length,
criterion,
seed
)
Attributes |
inner_results
|
Results of the inner kernel.
|
max_trajectory_length
|
Floating point scalar Tensor . Maximum HMC
trajectory length.
|
step
|
Int32 scalar Tensor . The number of steps this kernel has taken.
Increases by 1 for every call to one_step .
|
adaptation_rate
|
Floating point scalar Tensor . How rapidly to adapt the
trajectory length.
|
jitter_amount
|
Floating point scalar Tensor . How much to jitter the
trajectory on the next step. The trajectory length is sampled from [(1 -
jitter_amount) * max_trajectory_length, max_trajectory_length] .
|
averaged_sq_grad
|
Floating point scalar Tensor . Moving average of squared
criterion gradients.
|
averaged_sq_grad_adaptation_rate
|
Floating point scalar Tensor . How
rapidly to adapt the running average squared gradient. This is 1 -
beta_2 from Adam.
|
averaged_max_trajectory_length
|
Floating point scalar Tensor . Moving
average of the maximum of trajectory length. This is used after the burnin
period.
|
criterion
|
Floating point Tensor with shape [C0, ..., Cb] with b > 0 .
The value of the criterion returned by the criterion_fn corresponding to
each Markov chain.
|
seed
|
PRNG seed; see tfp.random.sanitize_seed for details. The random seed
used by the kernel in the previous step.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptationResults\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/mcmc/gradient_based_trajectory_length_adaptation.py#L47-L88) |\n\nInternal state of GradientBasedTrajectoryLengthAdaptation. \n\n tfp.experimental.mcmc.GradientBasedTrajectoryLengthAdaptationResults(\n inner_results,\n max_trajectory_length,\n step,\n adaptation_rate,\n jitter_amount,\n averaged_sq_grad,\n averaged_sq_grad_adaptation_rate,\n averaged_max_trajectory_length,\n criterion,\n seed\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inner_results` | Results of the inner kernel. |\n| `max_trajectory_length` | Floating point scalar `Tensor`. Maximum HMC trajectory length. |\n| `step` | Int32 scalar `Tensor`. The number of steps this kernel has taken. Increases by 1 for every call to `one_step`. |\n| `adaptation_rate` | Floating point scalar `Tensor`. How rapidly to adapt the trajectory length. |\n| `jitter_amount` | Floating point scalar `Tensor`. How much to jitter the trajectory on the next step. The trajectory length is sampled from `[(1 - jitter_amount) * max_trajectory_length, max_trajectory_length]`. |\n| `averaged_sq_grad` | Floating point scalar `Tensor`. Moving average of squared criterion gradients. |\n| `averaged_sq_grad_adaptation_rate` | Floating point scalar `Tensor`. How rapidly to adapt the running average squared gradient. This is `1 - beta_2` from Adam. |\n| `averaged_max_trajectory_length` | Floating point scalar `Tensor`. Moving average of the maximum of trajectory length. This is used after the burnin period. |\n| `criterion` | Floating point `Tensor` with shape `[C0, ..., Cb]` with `b \u003e 0`. The value of the criterion returned by the `criterion_fn` corresponding to each Markov chain. |\n| `seed` | PRNG seed; see [`tfp.random.sanitize_seed`](../../../tfp/random/sanitize_seed) for details. The random seed used by the kernel in the previous step. |\n\n\u003cbr /\u003e"]]