tfp.experimental.nn.initializers.glorot_normal
Stay organized with collections
Save and categorize content based on your preferences.
The Glorot normal initializer, aka Xavier normal initializer.
tfp.experimental.nn.initializers.glorot_normal(
seed=None
)
It draws samples from a truncated normal distribution centered on 0
with standard deviation (after truncation) given by
stddev = sqrt(2 / (fan_in + fan_out))
where fan_in
is the number
of input units in the weight tensor and fan_out
is the number of
output units in the weight tensor.
Returns |
init_fn
|
A python callable which takes a shape Tensor , dtype and an
optional scalar int number of batch dims and returns a randomly
initialized Tensor with the specified shape and dtype.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.experimental.nn.initializers.glorot_normal\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/nn/initializers/initializers.py#L31-L55) |\n\nThe Glorot normal initializer, aka Xavier normal initializer. \n\n tfp.experimental.nn.initializers.glorot_normal(\n seed=None\n )\n\nIt draws samples from a truncated normal distribution centered on 0\nwith standard deviation (after truncation) given by\n`stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number\nof input units in the weight tensor and `fan_out` is the number of\noutput units in the weight tensor.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|-----------------------------------------------------------------------------------------------------------------------|\n| `seed` | PRNG seed; see [`tfp.random.sanitize_seed`](../../../../tfp/random/sanitize_seed) for details. Default value: `None`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `init_fn` | A python `callable` which takes a shape `Tensor`, dtype and an optional scalar `int` number of batch dims and returns a randomly initialized `Tensor` with the specified shape and dtype. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| References ---------- ||\n|---|---|\n| [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) ||\n\n\u003cbr /\u003e"]]