tfp.experimental.sts_gibbs.get_seasonal_latents_shape
Stay organized with collections
Save and categorize content based on your preferences.
Computes the shape of seasonal latents.
tfp.experimental.sts_gibbs.get_seasonal_latents_shape(
timeseries, model, num_chains=()
)
Args |
timeseries
|
Timeseries that is being modeled. Used to extract the timeseries
length and batch shape.
|
model
|
The sts.Sum model that the seasonal components will be found in.
Must be a Gibbs-samplable model built with
build_model_for_gibbs_fitting .
|
num_chains
|
Optional int to indicate the number of parallel MCMC chains.
Default to an empty tuple to sample a single chain.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.experimental.sts_gibbs.get_seasonal_latents_shape\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/sts_gibbs/gibbs_sampler.py#L398-L425) |\n\nComputes the shape of seasonal latents. \n\n tfp.experimental.sts_gibbs.get_seasonal_latents_shape(\n timeseries, model, num_chains=()\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `timeseries` | Timeseries that is being modeled. Used to extract the timeseries length and batch shape. |\n| `model` | The [`sts.Sum`](../../../tfp/substrates/jax/sts/Sum) model that the seasonal components will be found in. Must be a Gibbs-samplable model built with `build_model_for_gibbs_fitting`. |\n| `num_chains` | Optional int to indicate the number of parallel MCMC chains. Default to an empty tuple to sample a single chain. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A shape list. ||\n\n\u003cbr /\u003e"]]