Module: tfp.experimental.vi
Stay organized with collections
Save and categorize content based on your preferences.
Experimental methods and objectives for variational inference.
Modules
util
module: Experimental methods and objectives for variational inference.
Functions
build_affine_surrogate_posterior(...)
: Builds a joint variational posterior with a given event_shape
.
build_affine_surrogate_posterior_from_base_distribution(...)
: Builds a variational posterior by linearly transforming base distributions.
build_affine_surrogate_posterior_from_base_distribution_stateless(...)
: Builds a variational posterior by linearly transforming base distributions.
build_affine_surrogate_posterior_stateless(...)
: Builds a joint variational posterior with a given event_shape
.
build_asvi_surrogate_posterior(...)
: Builds a structured surrogate posterior inspired by conjugate updating.
build_asvi_surrogate_posterior_stateless(...)
: Builds a structured surrogate posterior inspired by conjugate updating.
build_factored_surrogate_posterior(...)
: Builds a joint variational posterior that factors over model variables.
build_factored_surrogate_posterior_stateless(...)
: Builds a joint variational posterior that factors over model variables.
build_split_flow_surrogate_posterior(...)
: Builds a joint variational posterior by splitting a normalizing flow.
Other Members |
ASVI_DEFAULT_PRIOR_SUBSTITUTION_RULES
|
((<class 'tensorflow_probability.python.distributions.half_normal.HalfNormal'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.uniform.Uniform'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.exponential.Exponential'>,
<function <lambda>>),
(<class 'tensorflow_probability.python.distributions.chi2.Chi2'>,
<function <lambda>>))
|
ASVI_DEFAULT_SURROGATE_RULES
|
((<function <lambda>>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<class 'tensorflow_probability.python.distributions.sample.Sample'>,
<function _asvi_surrogate_for_sample>),
(<class 'tensorflow_probability.python.distributions.independent.Independent'>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<function <lambda>>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>),
(<class 'tensorflow_probability.python.distributions.markov_chain.MarkovChain'>,
<function _asvi_surrogate_rule.<locals>.wrap.<locals>.<lambda>>))
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# Module: tfp.experimental.vi\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/vi/__init__.py) |\n\nExperimental methods and objectives for variational inference.\n\nModules\n-------\n\n[`util`](../../tfp/experimental/vi/util) module: Experimental methods and objectives for variational inference.\n\nFunctions\n---------\n\n[`build_affine_surrogate_posterior(...)`](../../tfp/experimental/vi/build_affine_surrogate_posterior): Builds a joint variational posterior with a given `event_shape`.\n\n[`build_affine_surrogate_posterior_from_base_distribution(...)`](../../tfp/experimental/vi/build_affine_surrogate_posterior_from_base_distribution): Builds a variational posterior by linearly transforming base distributions.\n\n[`build_affine_surrogate_posterior_from_base_distribution_stateless(...)`](../../tfp/experimental/vi/build_affine_surrogate_posterior_from_base_distribution_stateless): Builds a variational posterior by linearly transforming base distributions.\n\n[`build_affine_surrogate_posterior_stateless(...)`](../../tfp/experimental/vi/build_affine_surrogate_posterior_stateless): Builds a joint variational posterior with a given `event_shape`.\n\n[`build_asvi_surrogate_posterior(...)`](../../tfp/experimental/vi/build_asvi_surrogate_posterior): Builds a structured surrogate posterior inspired by conjugate updating.\n\n[`build_asvi_surrogate_posterior_stateless(...)`](../../tfp/experimental/vi/build_asvi_surrogate_posterior_stateless): Builds a structured surrogate posterior inspired by conjugate updating.\n\n[`build_factored_surrogate_posterior(...)`](../../tfp/experimental/vi/build_factored_surrogate_posterior): Builds a joint variational posterior that factors over model variables.\n\n[`build_factored_surrogate_posterior_stateless(...)`](../../tfp/experimental/vi/build_factored_surrogate_posterior_stateless): Builds a joint variational posterior that factors over model variables.\n\n[`build_split_flow_surrogate_posterior(...)`](../../tfp/experimental/vi/build_split_flow_surrogate_posterior): Builds a joint variational posterior by splitting a normalizing flow.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Other Members ------------- ||\n|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| ASVI_DEFAULT_PRIOR_SUBSTITUTION_RULES | `((\u003cclass 'tensorflow_probability.python.distributions.half_normal.HalfNormal'\u003e, \u003cfunction \u003clambda\u003e\u003e), (\u003cclass 'tensorflow_probability.python.distributions.uniform.Uniform'\u003e, \u003cfunction \u003clambda\u003e\u003e), (\u003cclass 'tensorflow_probability.python.distributions.exponential.Exponential'\u003e, \u003cfunction \u003clambda\u003e\u003e), (\u003cclass 'tensorflow_probability.python.distributions.chi2.Chi2'\u003e, \u003cfunction \u003clambda\u003e\u003e))` |\n| ASVI_DEFAULT_SURROGATE_RULES | `((\u003cfunction \u003clambda\u003e\u003e, \u003cfunction _asvi_surrogate_rule.\u003clocals\u003e.wrap.\u003clocals\u003e.\u003clambda\u003e\u003e), (\u003cclass 'tensorflow_probability.python.distributions.sample.Sample'\u003e, \u003cfunction _asvi_surrogate_for_sample\u003e), (\u003cclass 'tensorflow_probability.python.distributions.independent.Independent'\u003e, \u003cfunction _asvi_surrogate_rule.\u003clocals\u003e.wrap.\u003clocals\u003e.\u003clambda\u003e\u003e), (\u003cfunction \u003clambda\u003e\u003e, \u003cfunction _asvi_surrogate_rule.\u003clocals\u003e.wrap.\u003clocals\u003e.\u003clambda\u003e\u003e), (\u003cclass 'tensorflow_probability.python.distributions.markov_chain.MarkovChain'\u003e, \u003cfunction _asvi_surrogate_rule.\u003clocals\u003e.wrap.\u003clocals\u003e.\u003clambda\u003e\u003e))` |\n\n\u003cbr /\u003e"]]